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Abstract

A simple model for density-dependent growth is described, and applied to the analysis of carp
growth in extensive aquaculture. The model is based on a von Bertalanffy growth function, with
the asymptotic length a linear declining function of population biomass. The model provides a
good description of carp growth both in mixed-age populations and in single cohorts, and the
model parameters can be interpreted biologically. It is concluded that the density-dependent
extension of the von Bertalanffy growth function provides a useful conceptual framework for the
analysis of fish growth in extensive aquaculture. The model is a potentially valuable tool for the
quantitative assessment of extensive aquaculture systems, and of culture-based fisheries.
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1. Introduction

Fish are renowned for their extreme plasticity in individual growth (Wootton, 1990).
One aspect of this plasticity is the dependence of growth on population density, which is
well documented in wild populations (e.g. Beverton and Holt, 1957; Le Cren, 1958;
Backiel and Le Cren, 1978; Hanson and Leggett, 1985; Salojaervi and Mutenia, 1994)
and in extensive aquaculture (Walter, 1934; Swingle and Smith, 1942; Pillay, 1990).
Density-dependent growth in natural populations and extensive culture is the result of
intraspecific competition, mainly for food.

Density-dependent growth is a key process in the dynamics of extensive aquaculture
systems. Where such systems operate on a large scale as culture-based fisheries, a
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mathematical model for density-dependent growth is an important tool for the assess-
ment of stocking and harvesting regimes (Lorenzen, 1995). Yet there is at present no
conventional way of describing density-dependent growth mathematically, and this
problem has received little attention since the study by Beverton and Holt published in
1957.

Beverton and Holt (1957) analyzed empirically the growth response in North Sea
plaice ( Pleuronectes platessa) and haddock ( Melanogrammus aeglefinus) to changes in
population density. They concluded that the observed variations in growth could be well
described by a von Bertalanffy growth function (VBGF) with the asymptotic length L,
defined as a linear declining function of population density. A linear relationship
between asymptotic length or length at age and population density or biomass has also
been found in other studies of natural and laboratory populations (Foerster, 1968;
Barlow, 1992; Salojaervi and Mutenia, 1994). However, Beverton and Holt’s simple
~model has rarely been applied, least of all in an aquaculture context.

In the present study, the von Bertalanffy model for density-dependent growth first
proposed by Beverton and Holt (1957) is developed further with respect to extensive
aquaculture. The model is then applied to the analysis of carp growth experiments.

2. Material and methods
2.1. Formulation of the growth model

In the von Bertalanffy growth function (VBGF), growth is defined as the net result of
the processes of anabolism and catabolism (Bertalanffy, 1957; Beverton and Holt, 1957).
In the form of the VBGF commonly used to describe the growth rate in length L of fish,

dL

i K(L-L)) ()
the parameter K is a measure of the catabolic activity, while the asymptotic length L, is
related to anabolism. Catabolism, the breakdown of body materials, is largely indepen-
dent of population density. Anabolism, the building up of body materials, is clearly
dependent on the food resources available to individual fish. Hence L. must be
expressed as a function of population density in order to account for density-dependence
in growth.

The model proposed here assumes that total population biomass density is a good
predictor of competition effects on the growth of individuals, regardless of their size or
age. This implies a high degree of overlap in the resources utilized by different
individuals in the population. The asymptotic length is expressed as a linear decreasing
function of population biomass density (biomass per unit area or volume):

Lxg = Lx[_ —gB (2)
where L, is the asymptotic length at biomass density B. The new parameter L, is the
limiting asymptotic length of the growth curve in the absence of competition. In the

absence of competition, anabolism is still dependent on the available food resources.
Consequently, the limiting asymptotic length L., is dependent on the productivity of
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the water body in which the population lives. The second parameter g is the competition
coefficient, and equals the amount by which L., decreases per unit of biomass density.
Hence g relates to the degree of overlap in the resource requirements of individuals in
the population. The degree of overlap in turn primarily reflects the population structure
and ontogenic changes in diet.

Assuming isometric growth, the expression equivalent to Eq. (2) for the asymptotic
weight W, is:

W, = (WY - cB)’ (3)

where W,; is the limiting asymptotic weight. The competition coefficient for weight, ¢,
is related to g by

c=ga’’ (4)
where a is the coefficient of the isometric length—weight relationship:
W=al? (5)

Substitution of Egs. (2) and (3) for L, and W, in the differential VBGF results in the
following expressions for growth in length:

dL,
= —K(L,~L, +dB) (6)

and in weight;

L P —CB’) (7)
—_— ] — —
dt ? vvrl/3

The model predicts the instantaneous growth rate of individuals as a function of current
size and population biomass density. The parameters of the growth model have clear
biological interpretations: K is a measure of metabolism (a physiological parameter),
L., (or W, ) is a measure of the productivity of the habitat, and ¢ (or g) is a measure of
the intensity of intraspecific competition.

The growth curves predicted by the model can have various forms, depending on the
dynamics of population biomass. Two cases of population biomass dynamics are of
particular interest both conceptually and in practice. Populations consisting of several
cohorts are often characterized by approximately constant biomass. In the single-cohort
populations common in aquaculture, biomass increases greatly during the production
period, often by more than an order of magnitude.

For mixed-age populations with constant biomass density B, it follows from Egs. (2)
and (3) that L., and W., are also constant, and therefore growth curves follow a
conventional VBGF pattern.

In single cohorts, L., and W,, decrease as fish grow and biomass density increases.
Hence the density-dependent model predicts single-cohort growth curves that are
mathematically different from conventional VBGF curves (with constant asymptotic
length or weight). It will be shown later, however, that the predicted single-cohort
growth curves can always be approximated very closely by a conventional VBGF.

The growth model for single cohorts is derived as follows. Since the biomass density
B, of a cohort is given by its numerical density N, times the mean weight of individuals



194 K. Lorenzen / Aquaculture 142 (1996) 191-205

W,, the growth rate in weight of individuals can be written as a function of weight and
numerical density:

t

i —3KW,|1 - (8)
The equivalent expression to Eq. (8) for length growth is derived in a similar way by
substituting N,W, for B, in Eq. (6). Unfortunately, Eq. (8) cannot be integrated
analytically to give weight as a function of time, and it must be solved numerically.
The asymptotic weight W, approached by individuals in a cohort of density N is

obtained by setting Eq. (8) to zero, which gives

Wi+ oNW,, = W)/? (9)
This equation has three solutions, but only one for which 0 < W, <W,, holds true.
The solution can be found numerically, or calculated from a rather awkward formula.

2.2. Walter’s experiments on common carp growth in extensive aquaculture

In a comprehensive study on the growth and production of common carp (Cyprinus
carpio) in extensive pond culture, Walter (1934) conducted stocking experiments with
different population structures and pond treatments. The results of these experiments
provide an excellent opportunity to test the growth model and the biological interpreta-
tion of its parameters.

Walter stocked mixed-age populations as well as single cohorts, thereby covering
both special cases of biomass dynamics identified above: approximately constant
biomass, and continuously increasing biomass in the single cohort. Population biomass
in the experiments increased on average by a factor of 1.7 (max. 2.5) in the mixed-age
populations, and by a factor of 8 (max. 20) in single cohorts. The experiments were
conducted over periods of about 6 months, which represent the full annual growth period
under central European conditions.

In the mixed-age experiments, Walter stocked 1- to 4-year-old carp in approximately
constant proportions at two different densities, each in unfertilized ponds and in ponds
fertilized with inorganic phosphate and liquid manure. Total stocking densities were 115
and 345 ha™! in the fertilized ponds, and 110 and 325 ha™' in the unfertilized ponds.
The ratios between age groups 1, 2, 3 and 4 at stocking were approximately 4:3:3:1 in
numbers, and 1:10:35:25 in weight, respectively. The numbers and mean weights at
stocking and at harvesting for each age-group were calculated from Walter’s data for
individual fish, and are given in Appendix A (Table A1). No information was available
on mortalities, and hence numerical densities in the mixed-age experiments were
assumed to be constant.

The results of the mixed-age experiments are illustrated here as Ford—Walford plots
(see e.g. Ricker, 1973) in Fig. 1. A Ford—Walford plot is a convenient visual way first
of checking whether a growth curve can be described by a conventional VBGF, and
second of estimating and comparing VBGF parameter values. If growth follows a
VBGF, the Ford—-Walford plot of final length versus initial length will show a straight
line, with slope —InK, intersecting the unit line at L. In Fig. 1, lines were fitted by
eye, subject to the constraint that their slopes (i.e. values of K) must be identical within
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Fig. 1. Ford-Walford plots of Walter's mixed-age stocking experiments in fertilized and unfertilized ponds.
The cube root of the final mean weight is plotted against the cube root of the initial mean weight for each age
group. Labels denote high or low stocking density (H, L) and the age group of the carp (1-4 summers). Lines
were fitted by eye for illustration purposes only.

each fertilizer treatment. Growth in all mixed-age populations is therefore described well
by a conventional VBGF with similar K, in line with the theoretical basis of the
density-dependent VBGF. The intercepts of the lines, and hence the asymptotic weights
W, differ between populations in response to population density and pond productivity
(fertilization). Within each pond treatment, W, is higher at low stocking density. For
similar stocking densities, W, is higher in the fertilized (more productive) ponds. In the
unfertilized pond at high density, the weight at stocking of 4-year-old carp was higher
than the asymptotic weight W, for that population. Consequently, 4-year-old carp lost
weight during the growth period, while the smaller size groups in the same population
did show a positive growth rate.

In the single-cohort experiments, Walter stocked separate populations of 1- and
2-year-old carp in ponds fertilized with inorganic phosphates. The numbers and mean
weights at stocking and at harvesting as given in Walter (1934) are reproduced in
Appendix A (Table A2). Both initial and final numbers are available, allowing mortality
rates to be calculated for each cohort. The results of the experiments are summarized in
Fig. 2, where each line represents the weight and density change of one cohort. Three of
the cohorts were stocked at a mean weight at or above the asymptotic weight for their
density and did not grow; two of them even lost weight. Cohorts stocked at a small size
and high density, shown in the lower right-hand region of the graph, suffered a slightly
higher mortality (decrease in density) than the cohorts stocked at larger size and lower
density. Interestingly, however, the three cohorts stocked at or above their asymptotic
weight did not show any signs of mortality.

2.3. Parameter estimation from Walter’s data

The growth model predicts instantaneous length or weight growth rates as a function
of current size and population biomass density. This differential equation has explicit
solutions only in certain special cases, such as that of constant population biomass.
Hence a relatively complex procedure is required to estimate parameters if the popula-
tion biomass changes during the experiment due to growth and mortality. In this study,
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Fig. 2. Summary illustration of Walter’s single-cohort experiments. Development of weight and density in
individual cohorts. Note logarithmic scaling of density axis.

the mean weight of fish at stocking and their numerical density were taken as the
independent variables, and the mean weight at harvesting was predicted by numerically
solving the growth and population models described in Appendix B. The parameters of
the growth function were estimated using a non-linear optimization procedure, as the
combination which minimized the difference between the log-transformed observed and
predicted weights at harvesting. The logarithmic transformation was applied in order to
ensure homogeneity of variance. Goodness of fit was assessed on the basis of residual
plots.

The parameters of the growth model are correlated, i.e. various combinations of K,
W, and c fit the data equally well, making it difficult to interpret variation in W, and
¢ between the experiments. This problem can be alleviated by fixing the value of K,
which on theoretical grounds is expected not to vary between experiments. Hence
parameter estimation was performed in two steps. First, all parameters were estimated
independently for all experiments. K was then fixed at a value consistent with the
estimates, and W,; and ¢ were estimated again subject to the fixed value of K.

The time interval between stocking and harvesting was assumed to be 1 year, thereby
averaging out seasonality in growth. Setting the time interval only affects the estimate of
K. If an interval of half a year (the true duration of the experiments) was assumed, K
would be twice the annual value, and would describe growth during the summer period
only.

3. Results
3.1. Parameter estimation

The parameter values estimated for Walter’s experiments are given in Table 1. Both
the independent estimates of all parameters, and the estimates for fixed K are shown.



K. Lorenzen / Aquaculture 142 (1996) 19/ -205 197

Table 1
Parameters of the density-dependent VBGF growth model, estimated from Walter’s experiments

K fixed

All parameters estimated

K (peryear) W, (kg) c(hakg ?/*) K (peryear) W, (kg) c(hakg */?)
Mixed age, fertilized 0.23 44.10 0.0068 0.25 35.7 0.0063
Mixed age, unfertilized 0.19 22.92 0.0073 0.25 12.8 0.0059
Cohort 0.27 23.60 0.0096 0.25 285 0.0095
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Fig. 3. Residuals (log observed weight minus log expected weight) of the VBGF growth model fitted to
Walter’s mixed-age data. (a) Fertilized ponds. (b) Unfertilized ponds. Labels denote high or low stocking
density (H, L) and the age group of the carp (1-4 summers).

The independent estimates of K vary between 0.19 and 0.27 year ™!, and K is fixed at
0.25 year™'. Residual plots are shown in Fig. 3 for the mixed-age experiments, and in
Fig. 4 for the cohort experiments.

The residuals of the mixed-age experiments show a systematic pattern for all four
populations (Fig. 3). The same pattern (H3 and L3 higher, and L4 lower, than expected)
and can be detected in the Ford~Walford plots (Fig. 1), indicating that it represents a
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Fig. 4. Residuals (log observed weight minus log expected weight) of the VBGF growth model fitted to
Walter's single-cohort stocking data, plotted against (a) biomass stocked and (b) expected weight. Data points
in parentheses have been excluded from the fit. Carp were in their first (@) or second ([J) summer.
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Fig. 5. Predicted weight of carp in single-cohort culture, after 6, 12, and 24 months, and W, as a function of
stocking density. Initial weight at Time 0 was 0.05 kg. No mortality. Note logarithmic scaling on both axes. A
straight line of slope — 1 denotes constant final biomass density. Data points indicate the observed weight at

harvesting of 1-year-old carp in Walter’s experiments. Parameter values: K = 0.25 year™'; W,, =28.5 kg;
¢ =0.0095 ha kg 27>,

mild deviation from the basic VBGF rather than a problem of the density-dependent
model.

In Fig. 4, residuals for the cohort experiments are plotted against the biomass stocked
and against the predicted weight. The residuals are small and apparently random over a
wide range of biomass. Growth at the extremes of biomass density is not described well
by the model, and the corresponding experiments have been excluded from the parame-
ter estimation.

In the mixed-age experiments, W, is 35.7 kg in the fertilized ponds, and much lower
(12.8 kg) in the unfertilized ponds (Table 1). The value of W, in the cohort
experiments is at an intermediate 28.5 kg. The competition coefficients ¢ are very
similar for the mixed-age stocking experiments (0.0063 and 0.0059 ha kg~*/?). In
contrast, the competition coefficient for the single-cohort experiments is 0.0095 ha
kg~2/3, about 50% higher than for mixed-age stocks.

3.2. Predicted growth in single-cohort culture

The model predictions for growth in Walter’s single-cohort populations are now
explored further. For simplicity, mortality is assumed to be zero. The predicted growth
response to different stocking densities is illustrated in Fig. 5. Both density and weight
are displayed on logarithmic scales, following a procedure common in plant yield—den-
sity studies (Kira et al., 1953; Harper, 1977). Weight at stocking (Time O line) is
assumed to be 0.05 kg. Solid lines show the predicted weights after 6, 12 and 24 months
of growth, and the asymptotic weight W, as a function of density. A line of slope —1
indicates combinations of weight and density resulting in the same total biomass.

Over a range of low densities, predicted weight-at-age changes little and is therefore
almost independent of density. At higher densities, weight-at-age declines rapidly as
density increases, approaching the line of slope —1 at high densities. This means that
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Fig. 6. Predicted growth curves of carp in single-cohort culture at various stocking densities. Labels indicate
stocking density in numbers per hectare. Initial weight 0.05 kg. No mortality. Parameter values: K = 0.25
year™!; W =28.5 kg; ¢ = 0.0095 ha kg~2/>.

under strong competition, individual weight is inversely proportional to cohort density in
numbers, and that total biomass is constant.

The observed weights of 1-year-old carp in Walter’s experiments correspond well to
the predicted weights for stocking densities given above 100 ha™' (Fig. 5) The observed
weight at a stocking density of 40 ha™!, which was omitted from parameter estimation
as an outlier at very low biomass density (Fig. 4), illustrates the limits of validity of the
given set of parameter values. Consequently it does not correspond well to the
predictions shown in Fig. 5, and serves as a reminder that the model is realistic only for
a limited range of densities.

Predicted growth curves for single-cohort populations of different density, obtained
as initial-value solutions of Eq. (8), are shown in Fig. 6. At a low density of two fish per
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Fig. 7. Conventional VBGF approximations to single-cohort growth curves predicted by the density-dependent
model. Symbols (®) denote the growth curves predicted for cohorts of 2, 128 or 1024 fish ha™', as indicated
by the labels. Lines denote the conventional VBGF approximations. The respective parameter values of the
approximations are given in the graph.
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hectare, weight continues to increase even 2 years after stocking. At a density of 128
ha™', growth continues at the end of the second year, but at a lower rate. Finally, at the
higher densities of 256 and 1024 ha™', asymptotic weight is approached within less than
2 years.

The predicted single-cohort growth curves can be approximated very closely by a
conventional VBGF, resulting in a different set of the parameters K and W, for each
density. This is shown in Fig. 7, where the symbols indicate predicted growth for
densities of 2, 128 and 1024 ha™', and the lines indicate fitted conventional VBGF
growth curves. The estimated conventional VBGF parameter values are also shown in
the graph. With increasing density, the estimated W, decreases. The estimated K,
however, increases with density as the low asymptotic weight is approached more
quickly.

4. Discussion

A density-dependent growth model on the basis of the von Bertalanffy growth
function was first proposed by Beverton and Holt (1957). Their model is based on a
linear relationship between asymptotic length and population density, for which they
provided both empirical evidence and a theoretical explanation. A number of subsequent
empirical studies also support such a relationship (Foerster, 1968; Barlow, 1992;
Salojaervi and Mutenia, 1994). In the present study, the model of Beverton and Holt is
interpreted and developed further with respect to extensive aquaculture.

Analysis of Walter’s carp pond experiments (Walter, 1934) by means of the
density-dependent von Bertalanffy model shows first, that the model provides a good
description of fish growth in this extensive culture system, and second, that the
theoretical interpretation of the model parameters is consistent with empirical data. The
growth rate parameter K is expected on theoretical grounds to be independent of
population density, population structure and the productivity of the water body. This is
born out by the fact that all of Walter’s experiments can be described by the model with
a common value of K. The limiting infinite weight W, is expected to reflect the natural
productivity of a water body, and indeed the analysis of Walter’s experiments shows that
W, is highest in the mixed-age ponds fertilized with phosphates and manure, lowest in
the unfertilized mixed-age ponds, and intermediate in the single-cohort ponds fertilized
with phosphates only. The competition coefficient ¢ is expected to reflect the intensity
of competition in a population, which is related to the degree of overlap in the resource
requirements of individuals. Again, analysis of Walter's experiments supports this
interpretation: similar values of ¢ have been estimated for mixed-age populations
stocked in ponds of different productivity, while a much higher value of ¢ was
estimated for single-cohort populations. For a given biomass density, competition is
more severe in populations of individuals of the same size than in populations
comprising individuals of a wide range of sizes.

The growth curves predicted by the density-dependent VBGF model for single-cohort
populations in extensive culture are mathematically different from conventional VBGF
growth curves. However, the predicted growth patterns can be approximated very
closely by conventional VBGF curves, with W, declining and K increasing with
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increasing cohort density. Hence, fish kept at high densities in extensive culture are
expected to grow to a low W, at high K, while the same fish kept in intensive culture,
where feeding reduces competition for food, should grow to a high W, at low K. Prein
(1990) noticed this effect in his empirical study of tilapia growth in different culture
systems.

Walter (1934) only provides initial and final mean weights, and it is therefore not
possible to test how well the model describes the true growth patterns of cohorts during
the experiments, between stocking and harvesting.

Backiel and Le Cren (1978) have derived a simple empirical model for density-de-
pendent growth from Walter’s experiments on single cohorts of 1-year-old carp. The
density-dependent VBGF model provides a unified framework for the analysis of all of
Walter’s carp growth experiments under extensive conditions.

The model should be tested on a range of data sets in order to determine the limits of
its applicability. It is likely that the model can be refined to make it applicable to a wider
range of densities or sizes. However, if such refinements involve the introduction of
additional parameters into the model, even more comprehensive data from well-designed
experiments will be required to estimate the full set of parameters.

4.1. Practical application of the mode!

This simple von Bertalanffy model for density-dependent growth is a potentially
useful tool for the analysis and modelling of extensive aquaculture systems and
culture-based fisheries. The model has only three parameters, which can be estimated
from pond-stocking experiments or from stocking and catch data for culture-based
fisheries. However, the full set of parameters can only be estimated from data covering a
range of densities and individual sizes. When such complete data are not available, one
or two of the parameters need to be fixed a priori for the model to be used. Predictions
obtained from such a model must be treated with extreme caution, but may nevertheless
provide useful indications in certain management situations.

The theoretical basis and biological interpretation of the model parameters indicate
which parameter(s) can be estimated a priori in any given situation. An estimate of the
parameter K can be obtained easily by fitting a conventional VBGF to growth data from
the same species under similar environmental conditions in a situation of constant
competition, i.e. a mixed-age population, a cohort in extensive culture at low density, or
a cohort in intensive culture with feeding. Both W, and ¢ can only be estimated from
data involving a range of biomass densities. However, the value of ¢ is expected to be
dependent on the population structure, and once a number of experiments have been
analyzed using the model, it may be possible to predict the likely range of ¢ for a given
species and population structure.

The most common population structure in extensive pond aquaculture is the single
cohort. The density-dependent model predicts a growth curve for single cohorts which is
different from a conventional VBGF curve, but can nevertheless be approximated very
closely by a conventional VBGEF. The estimation of a density-dependent VBGF model is
worthwhile and possible only if data are available for a range of stocking densities. If
the aim is to describe the growth of a cohort at one particular density only, the
density-dependent model does not offer any advantage over a conventional VBGF.
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Indeed, the conventional model would be preferable because its two parameters can be
estimated from a single observed growth curve, while a priori assumptions would have
to be made on the values of at least one of the three parameters of the density-dependent
model.

The use of the density-dependent VBGF is advantageous in situations where explicit
consideration of density effects on growth is crucial to management. When stocking
and/or harvesting regimes are complex, for example in culture-based fisheries, the
density-dependent growth model offers a valuable tool for the quantitative assessment of
management options (Lorenzen, 1995).
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Appendix A. Carp growth data from Walter (1934)

Table Al
Carp growth in the mixed-age experiments. Numbers and mean weights have been
calculated from data given in Table 6 in Walter (1934)

Fertilization Density Age Number Initial weight Final weight

(1ha™') (kg (kg)

Unfertilized Low 1 35 0.031 0.245
2 35 0.281 0.710

3 10 3.115 3.385

4 30 1.158 1.978

High 1 130 0.047 0.113

2 70 0.343 0.432

3 30 3.168 2.798

4 95 1.143 1.337

Fertilized Low 1 40 0.026 0.466
2 35 0.279 1.195

3 10 2.625 3.850

4 30 1.142 2.866

High 1 120 0.025 0.176

2 100 0.270 0.602

3 30 2.713 2.948

4 95 1.122 1.707
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Table A2
Carp growth in single-cohort experiments, From Tables 34 and 35 in Walter (1934)
Age Initial number Final number Initial weight Final weight
(1ha ") (1ha " (kg) (kg)
1 40 40 0.035 1.134
1 142 142 0.043 0.563
1 200 175 0.032 0.611
1 280 270 0.021 0.433
1 284 284 0.050 0.458
1 420 340 0.020 0.459
1 400 360 0.029 0.478
1 420 390 0.021 0.396
1 420 395 0.021 0.310
1 396 396 0.033 0.445
| 568 497 0.045 0.409
1 840 715 0.021 0.298
1 800 740 0.027 0.302
1 1136 994 0.047 0.289
1 1136 1065 0.012 0.213
| 2376 1914 0.031 0.126
1 2520 2080 0.012 0.121
1 2272 2201 0.011 0.092
1 4260 3337 0.010 0.063
1 8520 6106 0.009 0.040
1 17040 12070 0.009 0.024
2 20 20 0.590 2.117
2 90 90 0.467 1.211
2 100 95 0.270 0.889
2 132 132 0.430 1.040
2 200 190 0.267 0.797
2 213 213 0.263 0.867
2 264 264 0.425 0.777
2 360 355 0.462 0.722
2 400 390 0.286 0.420
2 396 396 0.423 0.700
2 639 639 0.263 0.337
2 924 924 0.714 0.690
2 1782 1782 0.270 0.272
2 2310 2310 0.286 0.256
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Appendix B. Estimation of parameters of the density-dependent VBGF

The growth in mixed-age populations with constant numerical density was described
by a set of four identical differential equations, one for each age group.

aw, Wi~ cENW,
— = 3KW [l - ——— (B1)
dr

The mean weights at harvesting of the four age groups were predicted by solving the set
of equations subject to the initial densities N, and mean weights W, (i =1 — 4).

For a single cohort subject to a constant mortality rate M, the development of
numbers N and mean weight W over time was described by the following system of
differential equations:

dN

E‘z —MN (BZ)
dw W3 — eNW

_(F=~3KW(1——W—V3—) (B3)

The mean weight at harvesting of the cohort was predicted by solving the system of
equations subject to the initial density N, and mean weight W,,. The predictions used the
actual mortality rate for each cohort, as calculated from the numbers stocked and
harvested.

Growth parameters were estimated as the combination which minimized the sum of
squared differences between the log-transformed observed and expected weights. Mini-
mization was performed using the downhill simplex method as implemented in the
AMOEBA routine from Numerical Recipes (Press et al., 1986).
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